

Distributed Dynamic Routing Using Network of Intelligent Intersections

Shadi Djavadian, Ph.D. & Bilal Farooq, Ph.D. Laboratory of Innovations in Transportation (LiTrans) Ryerson University

ITS Canada ACGM 2018 Niagara Falls, Ontario, June 17-20, 2018

The Project Synopsis

Distributed dynamic routing system development

- Provides single integrated and coherent picture of the network that is frequently and reliably updated
- Reduces congestion and maximizes capacity without worrying about drivers' compliance and inertia
- Scalable, no need for costly infrastructure, and computationally less expensive

Outline of Presentation

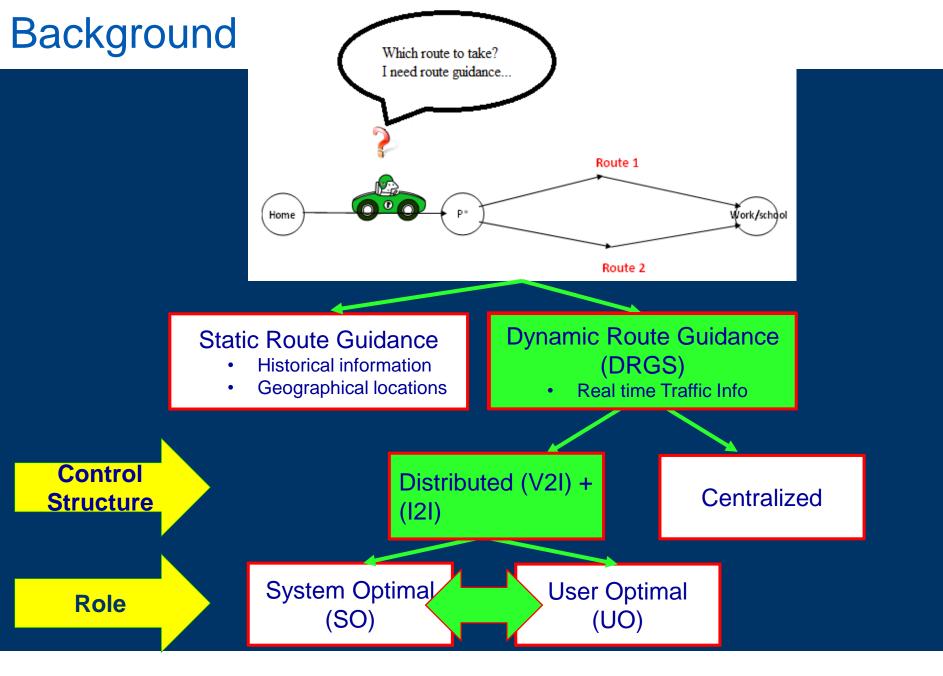
- Motivation & Background
- End-to-End Dynamic Routing in Connected & Automated Vehicle Environment (E2ECAV)
- Case Study
 - Downtown Toronto Network
- Summary and Future Work

Motivation

- Annual cost to commuters in the Greater Toronto and Hamilton Area was \$3.3 billion in 2006
- Estimated cost for 2031 will balloon to \$7.8 billion (commuters) and \$7.2 billion (economy)

[METROLINX]

Motivation


Problem

Congestion (Inefficient use of roads)

- . Local factors that are responsible for local perturbations
- 2. Global factors impacting the entire network

Solution

Distribute traffic optimally over the network using vehicle routing

Background – DRGS

User Optimal Solution (e.g. Waze)

- Stable and fair from the perspective of drivers
- Potential of reducing travel time in the case of low to medium congestion

Drawbacks

- High congestion, high penetration rate and adverse condition
 Increase in travel time and increase in congestion
- Efficiency depends on the market penetration rate and the communication range of CAVs

Yange & Recker (2006); Lee & Park (2008); Katan et al (2012)

Background – DRGS

System Optimal Solution

30% reduction in travel time under high congestion and adverse conditions

Drawbacks

- Unstable and unfair from drivers' perspective
- Success depends on % compliance of the drivers

Zuurbier (2010); Wie et al (1995); Roughgarden & Tardos (2002); Boyce & Xiong (2004); Peeta & Mahmassani (1995); van den Bosch et al (2011)

Background – DRGS

Research Gaps

- Effects of individualistic and non-compliant behaviour of drivers
- V2V Solutions
 - No single integrated and coherent view of the network
 - Relies on MPR and range

Vehicle Routing Requirements

- Provide up to date and reliable real time traffic information
- Have single integrated and coherent view of the network
- Responsive to the changes in the network
- Maximize capacity & minimize travel time
- Scalable, and computationally less extensive

End-to-End Distributed Routing in Connected and Automated Vehicle Environment (E2ECAV) using Network of Intelligent Intersections

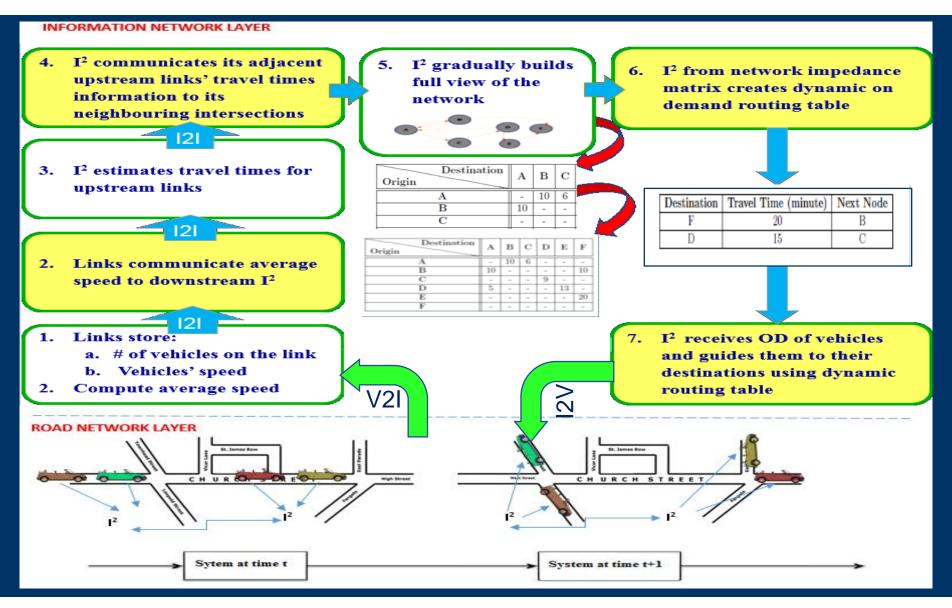
E2ECAV – Components

> The agents

Agent Type 1: Connected and Automated Vehicles

Agent Type 2: Infrastructure

- Links
- Intersections


The agents' environment

- Road network
- Communication network

Interaction Rules

• Defined by the city

E2ECAV

Shadi Djavadian, Bilal Farooq

E2ECAV – Information Network Layer

- 4. I² communicates its adjacent upstream links' travel times information to its neighbouring intersections
- 3. I² estimates travel times for upstream links

2. Links communicate average speed to downstream I²

2

- 1. Links store:
 - a. # of vehicles on the link

2

- b. Vehicles' speed
- 2. Compute average speed

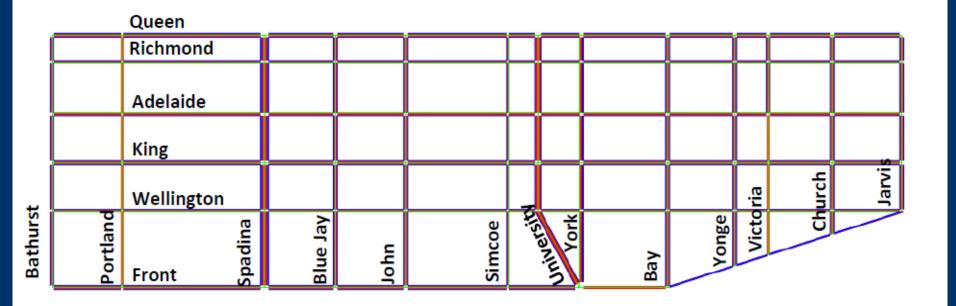
- 5. I² gradually builds full view of the network
- Destination
 A
 B
 C

 A
 10
 6

 B
 10

 C
- Destination E Α В С D F Origin Α 10 6 --В 10 10 С 9 . D 13 $\mathbf{5}$ -Е 20F

2

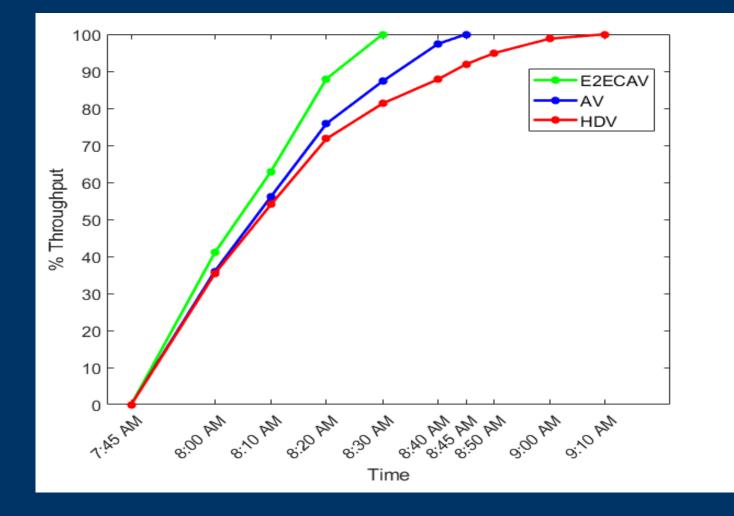

V2I

6. I² from network impedance matrix creates dynamic on demand routing table

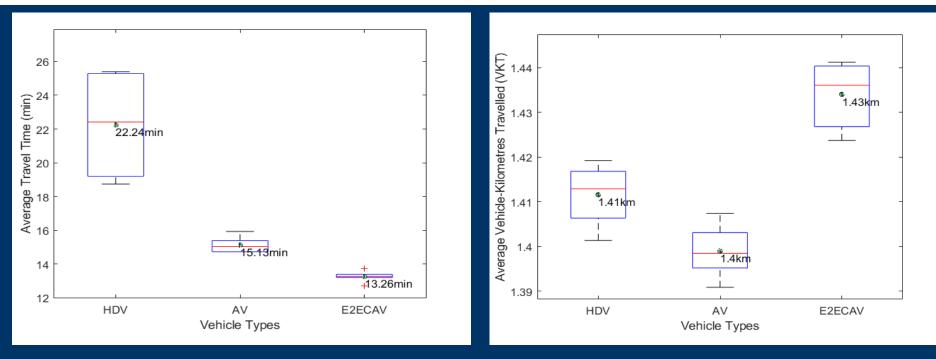
Destination	Travel Time (minute)	Next Node
F	20	В
D	15	С

 I² receives OD of vehicles and guides them to their destinations using dynamic routing table

Case Study – Toronto Network


Shadi Djavadian, Bilal Farooq

Specifications


- Study period: 7:45am-8:00am
- Dynamic 5 min OD Matrices (Transportation Tomorrow Survey, 2011)
- 76 intersections, 223 links
- Three types of vehicles: HDV , AV, CAV
- Movement: Intelligent Driver Model (IDM)
 - Same $a_{max} \& b_{max}$ for all three vehicle types
 - $T_{r,AV \text{ or } CAV} = 2T_{r,HDV}$ and $s0_{AV \text{ or } CAV} = 2s0_{HDV}$
- HDV & AV routed based on pre-trip dynamic shortest path
- CAV routed based on E2ECAV

 Evaluating the performance of 100%E2ECAV and its impact on throughput/travel time in comparison to 100%HDV & 100%AV

Case Study – % Throughput Analysis

Case Study – Travel Time (min) & VKT Analysis

 E2ECAV resulted in 40% decrease in travel time in comparison to HDV

 AV resulted in 31% decrease in travel time in comparison to HDV

Summary

- Dynamic distributed E2E routing based on the network of connected intelligent intersections and level 5 CAVs
 - Reliable and up-to-date traffic information along with single integrated and coherent view of the network
 - Responsive to the real time changes in the system
 - With drivers no longer the decision makers full cooperation and coordination can be expected
 - Distributes traffic in the network in such a way that maximizes capacity and minimizes travel time

Future Work

- Different queuing strategies and different classes of vehicles with different priority levels (e.g. emergency vehicles, street cars, etc.)
- Investigate the behavioral response of the drivers in CAV environment
 - Virtual Reality based experiments
- Comparison of E2ECAV with cooperative CAV using only V2V communication
- Shared and on-demand services

Acknowledgements

We would like to thank:

 The Canada Research Chairs program, Ontario Early Research Award and Ryerson University for providing funding for this project, and

- University of Toronto's Data Management Group for providing the Transportation Tomorrow Survey data used in this study.
- Computational Credits : Amazon Web Services

THANK YOU!

Shadi Djavadian, Bilal Farooq Shadi.Djavadian@Ryerson.ca