Safety and Feasibility of a Fully Autonomous Shuttle on a University Campus

June 18, 2018

Andrew Bartlett

Niagara International Transportation Technology Coalition
& The State University of New York at Buffalo

Region Background

- NITTEC: Multiagency Transportation
 Operations Coalition
 - Transportation agencies
 - Public safety and border enforcement
 - Emergency services
 - Municipalities
- University at Buffalo
 - Cross-disciplinary Institute for Sustainable Transportation and Logistics (ISTL)

Project Background

- Interest in AV & Benefits
- Legislation in New York State
- What is Olli:
 - 3 Lidar sensors
 - 5 Radar sensors
 - 6 Cameras
 - GPS/location device
 - Onboard data recorder

NYSERDA Grant

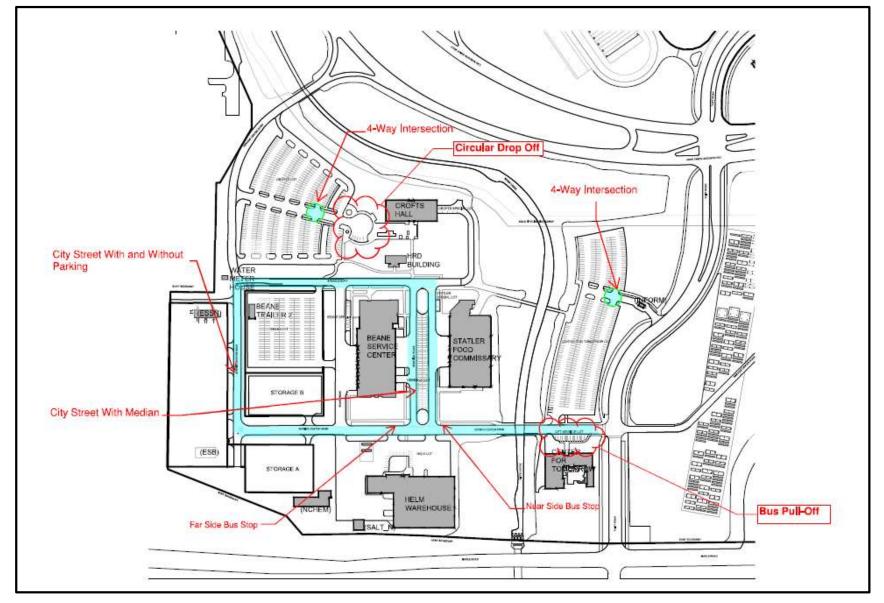
- New York State Energy Research and Development Authority grant awarded in 2017
- Funds established for AV procurement and efforts toward three inter-operable objectives:
 - 1. Evaluate feasibility, safety, and reliability of Olli
 - Research public policy changes needed to allow AVs to be driven on NYS public roads
 - 3. Estimate costs and benefits of AV technology implementation using BNMC as a test case

Project Tasks

- 1. Project Management
- 2. Acquire and Customize Olli for WNY
- 3. Technical and Safety Evaluation
- 4. Research Public Policy Changes
- 5. BNMC Case Study Evaluation

Technical and Safety Evaluation

- Four dimensions of AV testing
- Overall operation studied under multiple combinations of these dimensions
- Our interest:
 - Comparison of performance under baseline and inclement weather conditions
 - Integration with existing network

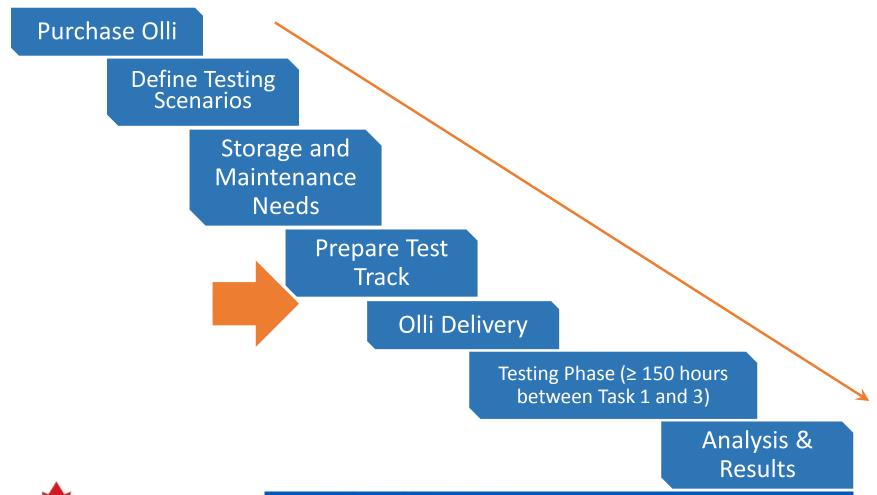

Tactical Operation	Operational Conditions
Parking, speed control, car/lane following	Physical environment, environmental conditions
Object and Event Detection	Failure Cases
Detect and respond to pedestrians/ cyclists, debris, stop signs/signals, potential collisions	Sensor failure, connectivity loss, reduced SSD

Technical and Safety Evaluation

- Stage 1: Basic testing and calibration in a controlled environment
 - Baseline operational and safety performance
- Stage 2: Advanced testing in a limited access environment
 - Performance under inclement weather conditions
 - Performance when interacting with the network

BNMC AV Deployment

- Interconnected urban environment
- Proximity to transit hubs
- Desirable location for future AV deployment



BNMC Case Study

- Identification of test cases
 - First/last mile connection to transit
 - Off-peak circulator shuttle (MaaS)
- Replication of environment on North Campus (roundabout, four way stop, shuttle behavior)
- Testing in Replicated Environment
- Analysis of Technical and Financial Feasibility

Project Progress

University at Buffalo

School of Engineering and Applied Sciences

Thank You!

Questions

