

Status Update on the Alberta Cooperative Transportation Infrastructure and Vehicular Environment (ACTIVE) Test Bed

Dr. Tony Qiu, P. Eng.

Associate Professor, Transportation Engineering Director, Centre for Smart Transportation Department of Civil and Environmental Engineering University of Alberta 2017 May

Introduction of ACTIVE-AURORA

ACTIVE Infrastructure

Application Development in ACTIVE

Summary and Conclusion

ACTIVE-AURORA Project

- Project Title: An infrastructure to build a network of wireless communication test beds for multimodal transportation to promote commercialization and innovation, and advance education and training in the Asia-Pacific Gateway
- University of Alberta: ACTIVE Alberta
 Cooperative Transportation Infrastructure and Vehicular Environment
- University of British Columbia: AURORA -AUtomotive testbed for Reconfigurable and Optimized Radio Access

History of ACTIVE-AURORA

4

Sponsorship

 Infrastructure Project with support from Transport Canada, Alberta Transportation and City of Edmonton

Project Time line

- 2012 Mar 5 Initial discussion, project team formed
- 2012 Nov 8 Official proposal submission
- 2013 Sep 3 Official approval
- 2014 Apr 1 Agreements officially signed
- 2014 Oct 22 ACTIVE-AURORA project official launch
- 2016 Sep 16 Milestone of full operation in ACTIVE
- 2017 Sep 30 full operation in ACTIVE-AURORA

Connected Vehicle (DSRC) Environment

ACTIVE Test Bed Coverage

- 30 RSEs installed, 60 kilometers coverage
- City of Edmonton
 - 109 St and
 Saskatchewan Drive
 - Whitemud Drive (10)
 - 23 Avenue Arterial Corridor (13)
- Alberta
 Transportation
 - Anthony Henday
 Drive (6)

ACTIVE Installation Process

Scope & Designs

stand when the part

enders wal to statution

- TC Finance Process Audit done.
- Stantec engaged for:
 - PM, Electrical Design
- City of Edmonton
 - Revising Electrical Designs
 - Procured Switch for testing
- Installation Contractor selection going to RFP
- Wireless backhaul modem in testing
- Received Developmental Radio Licenses
- CSA Exemption acceptance

General Data Flow within CV

10

Cell Towers Distribution in Alberta

Edmonton Based Trip A & P

11

O-D Distribution

O-D Distribution (1 Day)

Application 1 – Signal Priority Control

Transit Signal Priority Control

This project will demonstrate the application of the distributed, active TSP system along a 4.5 km-long corridor and one intersection on campus that will fully realize the connected vehicle technology based wireless communications among transit buses and traffic signal.

13

Application 1

14

Evaluate the performance of several TSP strategies on four corridors in the City of Edmonton

Passive, Active and Adaptive

RSE and OBE Interface

15

The Controller Interface

Active Phase

16

Application 2 – Corridor Signal Control

Arterial Corridor Management

17

This project will demonstrate the application of receiving Signal Phrase and Timing Data (SPaT) along the arterial corridor, advisory driving speed control, performance measurement, and signal timing optimization.

Application 2 – Corridor Signal Control

18

(Paul Pisano, 2013)

Operation

19

CV provides a communication method to retrieve the real-time status of traffic signal controllers to diagnose the health of traffic signal equipment.

RWIS Information Broadcast and Mobile RWIS

 To facilitate road weather information access as well as augment fixed RWIS stations by introducing mobile weather sensors on vehicles using CV technology

- Support from U of A executives, and build a smart campus
- CAV Tracks:
 - CV track 2 km
 - AV Track 1 km
- CV RSEs for V2I
- CV OBEs for
 - Test vehicles
 - Fleet vehicles
- LTE-V / 5G Base Station
- D-GPS Base Station
- Camera Video Coverage

Summary and Conclusion

What vehicle will be connected?

22

- Corporate fleets: fire, ambulance, transits.
- Partnership development with vehicle manufacturers.
- Security and Credential Management System (SCMS) is missing in our existing infrastructure.
 - Potential attack to signal controller, system and DMS.
- Real-time and historical data achieving and management to support different purposes.
- Understand the added value brought by the evolving technology.

Aberta Transportation Conton Stubert

Transport Canada

Transports Canada

|B|

ATS Traffic

Open Discussion

Contact us:

Dr. Tony Qiu Email: <u>tony.qiu@ualberta.ca</u> Tel: 780-492-1906 http://www.transportation.ualberta.ca

24

Research Innovation will make Transportation Safer, Smarter and Greener!