

City of Surrey

Adaptive Signal Control Pilot Project

ITS Canada Annual Conference and General Meeting May 29th, 2013

ASCT Pilot Project Background

ASCT Pilot Project Background

- 25 Major Traffic Corridors across City
- Program to Update 4 8 Corridors each Year
 - Timing Plans therefore Typically Updated only Once every Five Years
- With the Continued Rapid Growth of City,
 Pre-determined Timing Plans expected to Age
 Very Quickly
 - Looking for new Safe and Cost-effective Approaches that will enable Staff to keep up with Rapid Traffic Growth in City and more Efficiently Manage Traffic Demand

ASCT Pilot Project Background

- Transport Canada Supports ITS Deployment
 - Strategic Highway Infrastructure Program (SHIP)
 - Projects comply with ITS Plan for Canada: En Route to Intelligent Mobility
- City of Surrey applied for, and successfully secured, funding for ASCT Pilot Project
- Surrey and Delcan agreed to Implement and Evaluate ASCT Pilot Project
 - Delcan's "Multi-criteria Adaptive Control" System

ASCT Pilot Project Network

- 72nd Avenue
 - 7 Intersections
 - Between 120th St and King George Highway

ASCT Pilot Project Partners

Transports Canada

Transport Canada

Current Traffic Signal Infrastructure

- McCain's "QuicNet" Traffic Signal Management System
- Type 170 Traffic Signal Controllers
 - With "BiTrans" 233 Firmware
- Tree Topology Communications Network
 - Leased Line from Control Centre to "Master"
 Intersection in Field
 - Both Point-to-point and Multi-point Spread Spectrum Radio Links from "Master" to Local Controllers

ASCT Pilot Project Objectives

- Integrate with City's Existing Traffic Signal Management Infrastructure including:
 - "QuicNet" Traffic Signal Management System;
 - Type 170 Traffic Signal Controllers
 - Wireless Communications Network
- ASCT to Appropriately Respond SAFELY to Random Fluctuations in Traffic Patterns as well as to Unplanned Incidents and Events
- ASCT to Perform as well as Best Optimized Pre-determined Timing Plans

Delcan ASCT Software Architecture

Surrey Pilot Project System Layout

Surrey Pilot Project System Layout

Surrey Pilot Project System Layout

Surrey Pilot Project Detector Layout

Intersection at 128 Street

Adaptive Control in AM Peak Period

- Initial Cycle Parameter Set Implemented:
 - Algorithm: Medium Traffic
 - Cycle Length: 90 s
 - Phase Splits: 25 s EW / 40 s NS
- Peak Cycle Parameter Set Implemented at 8:35 am
 - Algorithm: Heavy Traffic
 - Cycle Length: 102 s
 - Phase Splits: 35 s EW / 42 s NS
- Cycle Length Variation Step: +/- 6 s

Pilot System Screen Capture AM Peak – 90 Second Cycle

Pilot System Screen Capture AM Peak – 102 Second Cycle

Light Colours
Symbolize Low
Degree of
Saturation Values
Reflecting Adaptive
Algorithm Efficiency

Adaptive Control in PM Peak Period

- Illustrative Example of Efficient Management of Heavy Traffic during Special Events using ASCT
- Test Case: 2 August, 2012
 - PM Peak extended by Ramadan Celebration
 - Mosque Located Close to one of Test Intersections
- Traffic Detected: from 35 veh / cycle (at 90 s)
 to 110 veh / cycle (at 120 s)

Adaptive Control in PM Peak Period

- Test Conducted between 3:00 pm and 8:30 pm
- Initial Cycle Parameter Set Implemented:
 - Algorithm: Medium Traffic
 - Cycle Length: 90 s
 - Phase Splits: 20 s EW / 45 s NS
- Peak Cycle Parameter Set Implemented at 5:35 pm
 - Algorithm: Heavy Traffic
 - Cycle Length: 120 s
 - Phase Splits: 45 s EW / 43 s NS
- Cycle Length Variation Step: +/- 6 s

Pilot System Screen Capture PM Peak – 120 Seconds Cycle

Adaptive Control in PM Peak

Total Volumes vs. Cycle Length at 72 Ave. & 122 St. in Surrey BC, on August 2, 2012

Travel Time Surveys

Eastbound AM Peak

Eastbound PM Peak

Measured Results are Statistically Similar

At 124th Street (Through Lanes)

Northbound Through Lane	Ave Maximum Queue			Ave Remaining Queue		
	ТВС	ASCT	Difference	TBC	ASCT	Difference
AM Peak	4.0	5.3	1.3	0.7	1.0	0.3
Off Peak	6.2	6.8	0.6	4.1	2.6	-1.5
PM Peak	5.2	5.9	0.7	1.3	1.1	-0.2

Southbound Through Lane	Ave Maximum Queue			Ave Remaining Queue		
	ТВС	ASCT	Difference	TBC	ASCT	Difference
AM Peak	3.7	3.2	-0.5	0.7	0.2	-0.5
Off Peak	5.4	4.3	-1.1	0.8	0.3	-0.5
PM Peak	5.9	6.2	0.3	1.1	0.9	-0.2

Conclusions re On-street Operations

Adaptive Signal Control:

- Performed Safely as well as Best Optimized Pre-determined Timing Plans
- Efficiently Managed Traffic in:
 - Normal Conditions (AM Peak)
 - Exceptional Conditions (PM Peak + Ramadan Event)
- Extended Cycle Lengths and Phase Splits Ensuring:
 - Smooth Traffic Flow
 - No Residual Queues at End of Cycles under Heavy Traffic Conditions

Adaptive Signal Control Technology met Objectives for City's ASCT Pilot Project:

- MAC Open System Architecture Design provided for Seamless Integration with City's Existing Traffic Signal Control Infrastructure:
 - Type 170 (BiTrans) Traffic Signal Controllers
 - Wireless Tree Topology Communications Network
 - Vehicle Detectors

Conclusions from Pilot Project

- ASCT Performed Equal to Best Optimized TBC Timing Plans
 - Because TBC Plans are Typically Updated every few Years, and ASCT will Continuously Adjust to Changes in Traffic Demands, this should result in a Continuously Widening Gap between Performance of ASCT and TBC
- ASCT System Correctly and Safely Reacted to Traffic Demands to Optimize Cycle Lengths, Phase Splits and Offsets without Unsafe Interruptions
 - ASCT System Observed to Appropriately Respond to Special Events that Resulted in Unexpectedly Heavier Traffic Volumes

Lessons Learned from Pilot Project

- Maximize ASCT Benefits on Corridors with more Highly Variable and/or Unpredictable Traffic Volumes
- ASCT System Successfully Optimized Signal Timing Plans with Minimal Additional Vehicle Detectors
 - System Maximized Use of Existing Stop Line Detectors
 - Additional Link Entry Detectors at only Key Intersections
- To best Optimize Controller Offsets, Recommended Future System Enhancement would be for System to Predict Average Link Travel Speeds based on Real-time Field Measurements

Lessons Learned from Pilot Project

- In Configuring ASCT System, Maximum Cycle Length was Restricted
 - As ASCT has ability to Continuously Adjust Cycle Length in response to the Current Traffic Demands, Higher Maximum Cycle Length should be enabled
- Length of Arterial Corridor (at approx. 3.2 km) was too Short for Definitive 'Before' and 'After' Vehicle Travel Time Comparisons
- Techniques to further Fine-tune Configuration Data and/or Enhance ASCT Algorithms to Improve Duration of Transition Periods should be Investigated

Lessons Learned from Pilot Project

- Robust and Reliable Communications between Central Server and all MAC Adaptors in the Field is a Key Consideration in ASCT Deployment
- Micro-simulation Test Environment produced "Bird's Eye View" of Whole Network; Excellent for Reviewing Network Traffic Flows, Intersection Offsets, Vehicle Queues, etc.
 - Output from Model was Effective in Off-line Configuration and Fine-tuning of ASCT Algorithms
 - Process of Confirmed Quality of ASCT System Configuration prior to Commencement of Operations in the Field

Key Benefits of Delcan ASCT System

- Smooth Integration with Existing Legacy Systems
- Management of Oversaturated and Gridlocked Traffic (as well as Heavy Traffic)
- Multi-protocol Interface and Ability to Work with Multiple Controller Manufacturers / Types
- Flexible (and Minimal) Detector Requirements
- Low Data Transmission Requirements (and hence Low Communications Costs ~ 70% reduction)
- Robust and Highly Efficient Communications
 Scheme Supports Variety of Wireless
 Technologies

Questions?

For Further Information:

Sinisa Petrovic, P.Eng.

Traffic Operations Manager, City of Surrey

Tel: 604-598-7954

Email: smpetrovic@surrey.ca

Perry Craig, P.Eng.

Senior Principal, Delcan Corporation

Tel: 905-943-0508

Email: p.craig@delcan.com

