Automated Classification Based on Video Data at Intersections with Heavy Pedestrian and Bicycle Traffic

Sohail Zangenehpour

Luis Miranda-Moreno

Nicolas Saunier

Department of Civil Engineering and Applied Mechanics McGill University

ITS Canada, Annual Conference and General Meeting June 1-4, 2014

Introduction

Introduction

- Two main approaches for studying road safety:
 - Traditional crash and injury data
 - Surrogate measures
- Problems with crash data:
 - Small sample size in short time
 - Lack of detail on the cause of accidents
 - Significant number of crashes need to be recorded before an action can be taken
- Detecting and treating the safety deficiencies before they cause accidents
 → using Surrogate Measurements
- Examples of surrogate measures:
 - Time To Collision (TTC)
 - Post Encroachment Time (PET)

Introduction

- Shortcoming in availability and quality of data for non-motorized modes
- Few automated methods for collecting microscopic data separately for different road users
- Low accuracy of classification for pedestrians and cyclists
- Problems with classifying pedestrians and cyclists:
 - Non-rigidity
 - Varied appearance
 - Less organized movements
 - Moving in groups close each other
- The main objective of this work: Design an automated method to track and classify objects in video

Object Classification

Ordinary video camera

1- Individual pixels (features) are detected and tracked frame to frame

2- Features are grouped based on consistent common motion to make moving objects

Dimension = 1764

The same as training step

- Four methods for integrating speed:
 - 1. Without using appearance, classification just based on speed, two speed thresholds

- Four methods for integrating speed:
 - 2. Without using speed, just based on appearance:

Predicted class is the class with maximum P(class | appearance)

$$P(pedestrian | appearance) = \frac{\# of frame as pedestrains}{\# of frames}$$

$$P(cyclist | appearance) = \frac{\# of frame as cyclist}{\# of frames}$$

$$P(vehicle | appearance) = \frac{\# of frame as vehicle}{\# of frames}$$

- Four methods for integrating speed:
 - 3. Using speed thresholds for switching between different SVM models

- Four methods for integrating speed:
 - 4. Combining the probability taken from appearance to the probability taken from speed:

 $P(Class | Speed, Appearance) \propto P(Class | Appearance) P (Speed | Class)$

Predicted class is the class with highest P(Class | Speed, Appearance)

Object Classification Accuracy

Confusion Matrix				Acouracy					
			Pedestrian	Bike	Vehicle	Total	Precision	incentacy	
	Classifier I	Pedestrian	946	86	277	1309	72.3 %	72.4 %	
		Bike	77	324	793	1194	27.1 %		
		Vehicle	0	78	2175	2253	96.5 %		
		Total	1023	488	3245	4756			
		Recall	92.5 %	66.4 %	67.0 %				
		Pedestrian	742	191	584	1517	48.9 %		
	Classifier	Bike	121	244	37	402	40.9 % 60.7 % 92.5 %		
g	II	Vehicle	160	53	2624	2837	92.5 %	75.9 %	
icte		Total	1023	488	3245	4756			
		Recall	72.5 %	50.0 %	80.9 %				
D	Classifier	Pedestrian	726	43	64	833	87.2 %	86.3 %	
		Bike	131	373	177	681	54.8 %		
		Vehicle	166	72	3004	3242	92.7 %		
	111	Total	1023	488	3245	4756			
		Recall	71.0 %	76.4 %	92.6 %				
		Pedestrian	969	53	180	1202	80.6 %		
	Classifier	Bike	42	371	198	611	60.7 %		
		Vehicle	12	64	2867	2943	97.4 %	88.5 %	
	IV	Total	1023	488	3245	4756			
		Recall	94.7 %	76.0 %	88.4 %				

Object Classification Accuracy

Case Studies on Cyclist Safety

Without

cycle track

1st Study: Cycle Track

Saint-Urbain Mont-Royal

With cycle track

Saint-Urbain

Pins

Without

1st Study: Cycle Track

Saint-Urbain Mont-Royal

Saint-Urbain Pins

1st Study: Cycle Track

 $Conflict Rate = \frac{(Frequency of Conflicts, per Hour) * 10^{6}}{(Tracked Cyclists, per Hour) * (Tracked Vehicles, per Hour)}$

	Hours of Video	Cyclists	Right- Turning Vehicles	Average Cyclist Speed	Average Vehicle Speed	TTC ¹⁵ < 5 seconds	TTC ¹⁵ < 1.5 seconds	PET < 5 seconds	PET < 1.5 seconds	TTC Conf. Rate [*]	TTC Dang. Conf. Rate [*]	PET Conf. Rate [*]	PET Dang. Conf. Rate [*]
Without bicycle facility	2.57	119	263	11.8	12.3	4	2	37	2	328	164	3038	164
With bicycle facility	3.88	438	622	15.2	13.7	13	4	161	10	185	57	2293	142

2nd Study: Bicycle Box

- □ 11.7h of video for intersections without bicycle box (3 intersections)
- □ 10.1h of video for intersections with bicycle box (2 intersections)
- Two types of conflicts:
 - Conflict Type 1: Cyclist (green) with Vehicle (red)
 - Conflict Type 2: Cyclist (green) with Vehicle (blue)
- Modelling conflicts by logit model
 - Number of lanes
 - Red and green times
 - Land use
 - Presence of bicycle box
 - Any other bicycle facility
 - Traffic flow of cyclists (30s before)
 - Traffic flow of vehicles (30s before)

2nd Study: Bicycle Box

	Conflie	cts Type	1 (Green - F	Red)	Conflicts Type 2 (Green - Blue)					
Variables	Conflict (PET < 5s)		Dangerous Conflict (PET < 1.5s)		Conflict (PET < 5s)		Dangerous Conflict (PET < 1.5s)			
	Coefficient	p-value	Coefficient	p-value	Coefficient	p-value	Coefficient	p-value		
Constant	-2.99	0.00	-4.35	0.00	-0.56	0.00	-1.95	0.00		
Cyclist Flow (green) passing 30s before	-	-	-	-	0.4230	0.00	0.4340	0.00		
Vehicle Flow 1 (red) passing 30s before	0.1170	0.00	0.0970	0.00	-0.0857	0.00	-0.0823	0.01		
Vehicle Flow 2 (blue) passing 30s before	0.0628	0.00	-	-	0.0908	0.00	0.0399	0.04		
Presence of Bicycle Box	-0.726	0.00	-2.050	0.00	-0.739	0.00	-1.230	0.00		
Number of total observations	1074		107	4	1074	4	1074			
Number of positive observations	mber of positive 103 observations		14		291		79			
Final log-likelihood	elihood -299.85		-66.4	-66.44		-544.00		-251.48		
Constant log-likelihood	onstant log-likelihood -339.37		-74.6	57	-627.43		-282.19			
Adjusted Rho ²	0.59	2	0.90)7	0.26	3	0.655			

Thank You!

Bayes' Rule

 $P(Class | Speed, Appearance) = \frac{P(Class)}{P(Speed, Appearance)} P(Speed, Appearance | Class)$ $P(Class | Speed, Appearance) = \frac{P(Class)}{P(Speed)P(Appearance)} P(Speed | Class)P(Appearance | Class)$ P(Appearance | Class)P(Class) = P(Class | Appearance)P(Appearance) $P(Class | Speed, Appearance) = \frac{P(Class | Appearance)}{P(Speed)} P(Speed | Class)$ $P(Class | Speed, Appearance) \propto P(Class | Appearance) P(Speed | Class)$

٠

- Normalized image size: 64x64 pixels
- Number of pixels per cell: 8x8
- Number of cells per block: 2x2
- Number of orientations: 9
- Normalization over the blocks for each cell: $v \leftarrow \frac{v}{\sqrt{\|v\|^2 + \varepsilon}}$
- Vector dimension: $49 \times 4 \times 9 = 1764$

HOG

- Non Linear SVM
- Here we used RBF kernel (Radial Basis Function)

Recall – Precision - Accuracy

Confusion Matrix				Accuracy				
			Pedestrian	Bike	Vehicle	Total	Precision	neediacy
ğ		Pedestrian	969	53	180	1202	80.6 %	
Cte	Classifier	Bike	42	371	198	611	60.7 %	
di		Vehicle	12	64	2867	2943	97.4 %	88.5 %
Le	IV	Total	1023	488	3245	4756		
		Recall	94.7 %	76.0 %	88.4 %		•	

$$Recall_k = \frac{c_{kk}}{\sum_j c_{kj}}$$

$$Precision_{k} = \frac{c_{kk}}{\sum_{i} c_{ik}}$$

$$Accuracy = \frac{\sum_{k} c_{kk}}{\sum_{i} \sum_{j} c_{ij}}$$

Confusion Matrix				Accuracy				
			Pedestrian	Bike	Vehicle	Total	Precision	neediacy
ğ	Classifier IV	Pedestrian	969	53	180	1202	80.6 %	88.5 %
cte		Bike	42	371	198	611	60.7 %	
dic		Vehicle	12	64	2867	2943	97.4 %	
Pre		Total	1023	488	3245	4756		
		Recall	94.7 %	76.0 %	88.4 %			

- True positive rate: true positive out of all the positives
- False positive rate: false positive out of all the negatives
- For example for pedestrian: True Positive Rate (pedestrian) = Recall =

False Positive Rate (pedestrian) =

Object Classification Accuracy

- Receiver Operating Characteristic (ROC)
- To reduce the effect of poor choice of parameters

TTC

- Time To Collision
 - Is a measure of remaining time (at any time t) before two objects collide, in case of no reaction from them

