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« Two main approaches for studying road safety:
— Traditional crash and injury data
— Surrogate measures

* Problems with crash data:
— Small sample size in short time
— Lack of detail on the cause of accidents

— Significant number of crashes need to be recorded before an action can be
taken

» Detecting and treating the safety deficiencies before they cause accidents
— using Surrogate Measurements

« Examples of surrogate measures:
— Time To Collision (TTC)
— Post Encroachment Time (PET)
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« Shortcoming in availability and quality of data for non-motorized modes

« Few automated methods for collecting microscopic data separately for
different road users

» Low accuracy of classification for pedestrians and cyclists

« Problems with classifying pedestrians and cyclists:
— Non-rigidity
— Varied appearance
— Less organized movements
— Moving in groups close each other

« The main objective of this work: Design an automated method to track and
classify objects in video
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1- Individual pixels (features) are detected and tracked frame to frame

2- Features are grouped based on consistent common motion to make moving objects -
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« Four methods for integrating speed:
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« Four methods for integrating speed:
2. Without using speed, just based on appearance:

Predicted class is the class with maximum P(class | appearance)

# of frame as pedestrains

P(pedestrian | appearance) = # of frames

# of frame as cyclist

P(cyclist | appearance) = T e

# of frame as vehicle

P(vehicle | appearance) = # of frames
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Using speed thresholds for switching between different SVM models
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« Four methods for integrating speed:
4. Combining the probability taken from appearance to the probability taken from speed:

P(Class | Speed, Appearance) « P(Class|Appearance) P (Speed|Class)
Predicted class is the class with highest P(Class | Speed, Appearance)
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Confusion Matrix Ground Truth -
Pedestrian Bike Vehicle Total Precision

Pedestrian 946 86 277 1309 72.3 %
Classifier Bike 77 324 793 1194 27.1%
Vehicle 0 78 2175 2253 96.5 % 72.4 9%
| Total 1023 488 3245 4756
Recall 92.5% 66.4 % 67.0 %
Pedestrian 742 191 584 1517 48.9 %
Classifier Bike 121 244 37 402 60.7 %
N®) Vehicle 160 53 2624 2837 92.5 % 75.9 %
QL I Total 1023 488 3245 4756
O Recall 72.5 % 50.0%  80.9%
@) Pedestrian 726 43 64 833 87.2 %
E Classifier Bike 131 373 177 681 54.8 %
an Vehicle 166 72 3004 3242 92.7 % 86.3 %
11 Total 1023 488 3245 4756
Recall 71.0 % 76.4 % 92.6 %
Pedestrian 969 53 180 1202 80.6 %
ClaSSiﬁer Bike 42 371 198 611 60.7 %
Vehicle 12 64 2867 2943 97.4 % 88.5 %
vV Total 1023 488 3245 4756
Recall 94.7 % 76.0 % 88.4 %
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Cyclists

15t Study: Cycle Track

Conflict Rate =
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2nd Study: Bicycle Box

11.7h of video for intersections without bicycle box (3 intersections)
10.1h of video for intersections with bicycle box (2 intersections)

Two types of conflicts:

Conflict Type 1: Cyclist (green)
with Vehicle (red)

Conflict Type 2: Cyclist (green)
with Vehicle (blue)

Modelling conflicts by logit model
Number of lanes
Red and green times
Land use
Presence of bicycle box
Any other bicycle facility
Traffic flow of cyclists (30s before)
Traffic flow of vehicles (30s before)
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Conflicts Type 1 ( - ) Conflicts Type 2 ( - )
Dangerous Conflict Dangerous Conflict
Variables Conflict (PET < 5s) g Conflict (PET < 5s) 2
(PET < 1.5s) (PET < 1.55)
Coefficient | p-value | Coefficient | p-value | Coefficient | p-value | Coefficient | p-value
Constant -2.99 0.00 -4.35 0.00 -0.56 0.00 -1.95 0.00
Cyclist Flow ( )
! - - - - 0.4230 0.00 0.4340 0.00
passing 30s before
VehicleFlow1( )
. 0.1170 0.00 0.0970 0.00 -0.0857 0.00 -0.0823 0.01
passing 30s before
Vehicle Flow 2 ( )
. 0.0628 0.00 - - 0.0908 0.00 0.0399 0.04
passing 30s before
Presence of Bicycle Box -0.726 0.00 -2.050 0.00 -0.739 0.00 -1.230 0.00
Number of total
. 1074 1074 1074 1074
observations
Number of positive
. 103 14 291 79
observations
Final log-likelihood -299.85 -66.44 -544.00 -251.48
Constant log-likelihood -339.37 -74.67 -627.43 -282.19
Adjusted Rho? 0.592 0.907 0.263 0.655
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HOG "
&
100 80
Normalized image size: 64x64 pixels 2 X
140 40
Number of pixels per cell: 8x8
160
Number of cells per block: 2x2 &
. . 180
Number of orientations: 9 Number of orientations: 9 bins :
. . (%
Normalization over the blocks for each cell: v « W
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Vector dimension: 49 x4 x9=1764
Blocks: 2x2 cells Cells: 8x8 pixels
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* Non Linear SVM
« Here we used RBF kernel (Radial Basis Function)




Recall — Precision - Accuracy
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Confusion Matrix Ground Truth - Accuracy
Pedestrian Bike Vehicle Total Precision
= Pedestrian 180 1200 > 806%
vz1| Classifier Eile 611 60.7 %
S Vehicle 97.4 % 88.5 90
8 vV Total
o Recall 760%  88.4 %
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Confusion Matrix Ground Truth -
Pedestrian Bike Vehicle Total Precision

e Pedestrian 53 180 | 1202 80.6 %

D - . - o)

= Vehicle 12 64 2867 2943 97.4 % 88.5 0%
= A Total 1023 488 3245 4756

ol Recall 94.7 % 76.0 % 88.4 %

« True positive rate: true positive out of all the positives
 False positive rate: false positive out of all the negatives

« For example for pedestrian:
True Positive Rate (pedestrian) = Recall = —
]

False Positive Rate (pedestrian) = —
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Yy Accuracy
* Receiver Operating Characteristic (ROC)
 To reduce the effect of poor choice of parameters
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* Time To Collision

— Is a measure of remaining time (at any time t) before two
objects collide, in case of no reaction from them

Collision
Point




