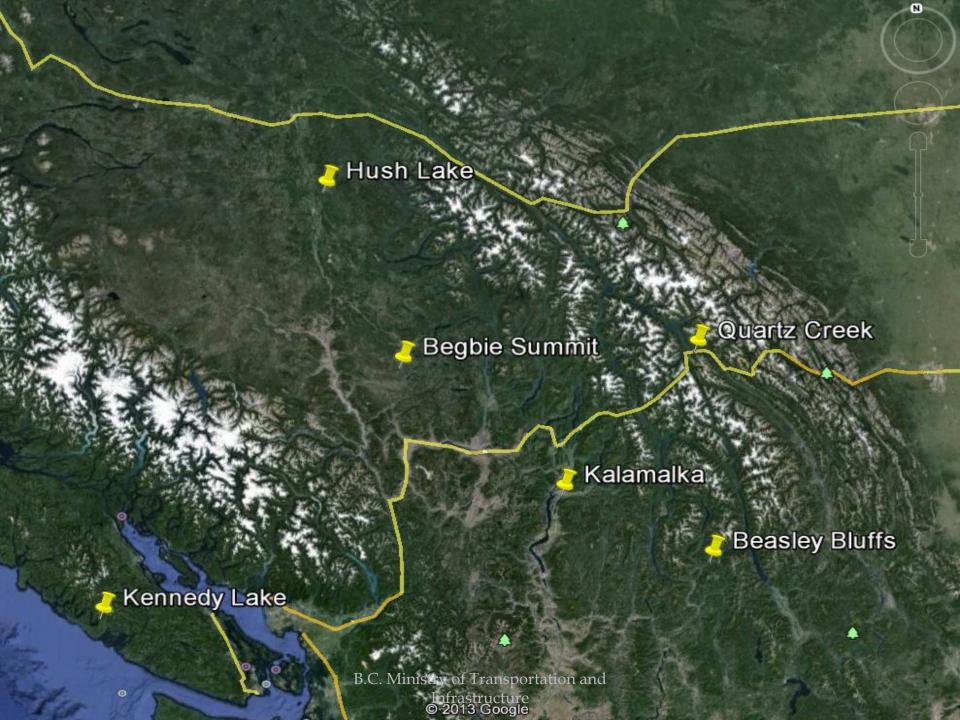


Ministry of Transportation and Infrastructure

RWIS/VMS Integration

Topics


- Objectives
- Geography and distribution of systems
- Focus on Quartz Creek, Hwy 1 east of Rogers Pass (simplest system, arguably best success)
- Template for other systems (versatility)
- Future enhancements

System Objective

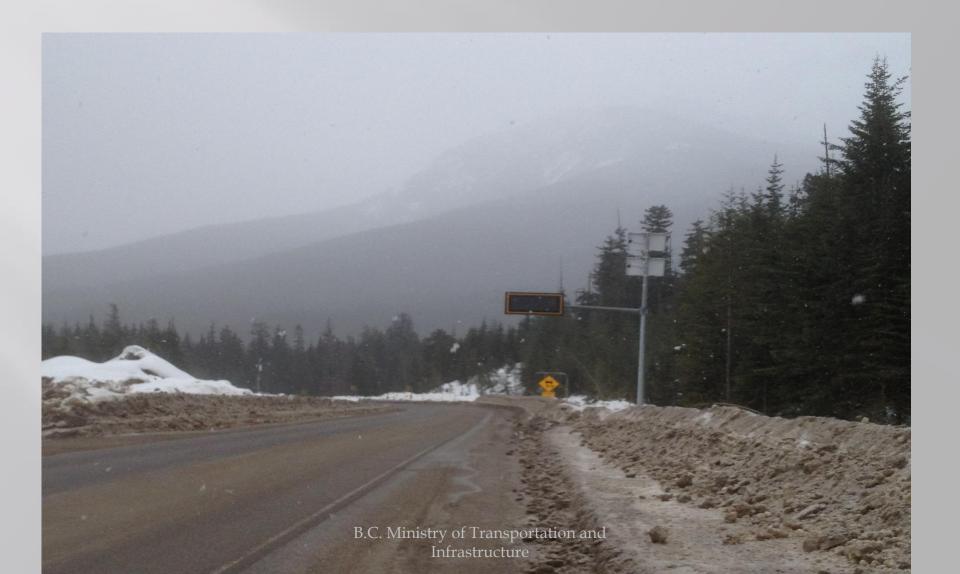
To improve highway safety at specific locations where various factors combine to create potentially hazardous conditions related to winter weather.

- Highway geometry
- Local geography and micro-climate

"To influence drivers' behaviour by putting RWIS information directly into their field of view at the appropriate time and place."

6 Systems installed to date

- Kennedy Lake 2010
- Quartz Creek 2011
- Beasley Bluffs 2012
- Hush Lake 2013
- Begbie Summit 2013
- Kalamalka 2013


Spread over large geographical area with varying climatic conditions – "local effects" dictate some degree of tuning the systems to the micro-climate.

Quartz Creek

- Bad history frequent weather and road condition related crashes
- Simplest system
 - Curved bridge deck prone to icing (one problem)
 - One message on signs, either on or off (BRIDGE SLIPPERY / SLOW DOWN)
 - Simplified Road Wx Station (minimal instrumentation)
 - Embedded Pavement sensors + Optical Pavement sensors
 - Limited power budget (no AC power, relies on solar panels / batteries)

Quartz Creek eastbound

Long downhill straightaway, followed by curved bridge deck

Simple Road Wx Station

Limited Insrumentation

- CR1000 datalogger
- 2 embedded Vaisala DRS511 pavement sensors (bridge deck and approach)
- Vaisala DST / DSC aimed at bridge deck
- RM Young anemometer
- Rudolph Logic Systems IRS88 precipitation detector
- HMP45C Air Temperature / Humidity

VMS System

- Datalogger runs 2 programs
 - Regular hourly RWIS data
 - 15 minute integration for VMS evaluation ("on" or "off")
- VMS trigger algorithm only uses 'Road Status' data from either pavement sensor
 - Any 'Warning' or 'Alarm' surface condition
 - Any surface condition that includes 'Frosty', 'Snowy', 'Slushy', or 'Icy'
 - 45 minute lag for sign de-activation

VMS Hardware

- Addco 4 x 2 Full Matrix signs with controllers
- Station datalogger to sign controllers via Spread Spectrum radio (900 MHz)
- 460 W solar panels at each sign
- 660 AHr batteries at East side sign, 1360 Ahr at West side sign (less solar exposure for panels)
- 6 day continuous duty cycle "challenges" the power supply
- Considering EFOY Fuel Cell for November through February backup power

Improved Safety

- System commissioned in January 2012
- No crashes on bridge since commissioning
- Prior 6 winters averaged 3.5 crashes per winter
- Return on Investment?
 - System cost approx. \$250K
 - # of personal injury accidents prevented

Template for other RWIS / VMS

- Fully instrumented Road Wx Station
 - Includes Precip Gauge (standpipe), Snow Depth Sensor, and Precip Occurrence Detector
 - Optical Pavement Sensors
- Larger Signs with AC Power supply
- Program for up to 10 separate messages (currently only using 6)
 - Numbered in order of ascending severity / priority
 - Default Safety Message (eg. 'Watch for Wildlife'), 'Water Pooling on Road / Use Caution', 'Slippery Sections / Use Caution', etc.
 - Program uses 'IF' statement starting with most severe case, executes until criteria met for a certain message, then sends that message # to sign controller

Hush Lake Road Weather Station

Larger and more versatile VMS

Design Considerations

- Driver psychology
 - Short highway segment between signs (10 km or less) to keep message relevant and in drivers' consciousness
 - Site selection criteria: look at collision data for spatial clusters of winter weather / road condition related crashes within a highway segment of suitable length
 - Static vs. Flashing / Alternating messages
- Need to accommodate 'manual override' of system in order to post specific high priority messages

Design Considerations (2)

- PTZ Web Cam is invaluable for tuning the algorithm to local micro-climatic conditions
- Optical Pavement Sensors are necessary
 - Faster and more reliable response to changing road surface conditions
 - Larger measurement footprint is more representative of road surface conditions (eg. Detection of slush is not reliable with traditional embedded pavement sensors)

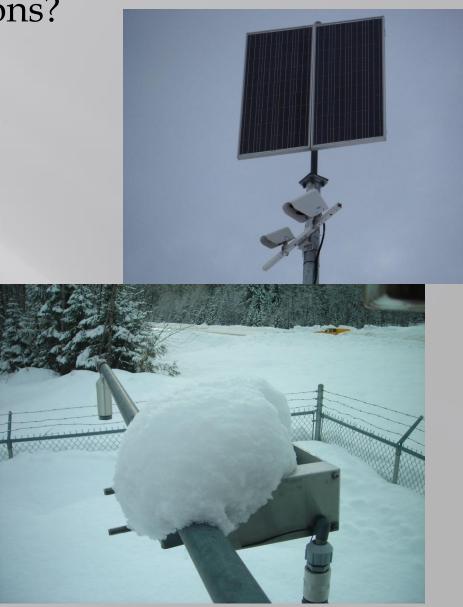
Future

- Incorporate 'Present Weather Sensor' for select stations
 - Precipitation Type classification
 - Visibility measurements
 - Will enable more specific messaging / more accurate information for motorists
- Expand repertoire of messages to communicate varying levels of severity of "slipperiness"
 - Reduce perceived need to override the system with 'custom' messages

Present Weather Sensor

Acknowledgements

Project Contributors


- Instigation: John Schnablegger and Ashok Bhatti, acting on recommendations from a Corridor Safety Review by Opus Engineering
- **□ Technical Policy and Funding Coordination**: Ed Miska
- Project Management: Darren Englund, Regional Project Manager, and Jennnifer Hardy, Traffic Engineer
- **Electrical Engineering**: Abid Sivic, Dmitri Lenkevitch, William Zhang
- Datalogger Programming: Tim Clements and Josh Handley, Environmental Electronics Technicians
- Equipment purchasing / logistics coordination: Nic Seaton,
 Weather Network Program Manager
- **Sign installations**: MoTI Electrical Maintenance Contractors Raylec and Westcana crews
- System and Equipment Maintenance: Sean Anderson, Brant Benum, Andy Cooke, Paul Heikkila, Mike Smith, Environmental Electronics Technicians

Questions?

simon.walker@gov.b.ca

