Distributed Dynamic Routing Using Network of Intelligent Intersections

Shadi Djavadian, Ph.D. & Bilal Farooq, Ph.D.
Laboratory of Innovations in Transportation (LiTrans)
Ryerson University

ITS Canada ACGM 2018
Niagara Falls, Ontario, June 17-20, 2018
Distributed dynamic routing system development

- Provides single integrated and coherent picture of the network that is frequently and reliably updated
- Reduces congestion and maximizes capacity without worrying about drivers’ compliance and inertia
- Scalable, no need for costly infrastructure, and computationally less expensive
Outline of Presentation

• Motivation & Background

• End-to-End Dynamic Routing in Connected & Automated Vehicle Environment (E2ECAV)

• Case Study
 • Downtown Toronto Network

• Summary and Future Work
Motivation

- Annual cost to commuters in the Greater Toronto and Hamilton Area was $3.3 billion in 2006
- Estimated cost for 2031 will balloon to $7.8 billion (commuters) and $7.2 billion (economy)

[METROLINX]
Motivation

Problem

• **Congestion** (Inefficient use of roads)
 1. Local factors that are responsible for **local perturbations**
 2. Global factors impacting the **entire network**

Solution

• Distribute traffic optimally over the network using vehicle routing

Shadi Djavadian, Bilal Farooq

Distributed Dynamic Routing Using Network of Intelligent Intersections
Background

Static Route Guidance
- Historical information
- Geographical locations

Dynamic Route Guidance (DRGS)
- Real time Traffic Info

Control Structure
- Distributed (V2I) + (I2I)
- Centralized

Role
- System Optimal (SO)
- User Optimal (UO)

Shadi Djavadian, Bilal Farooq
Distributed Dynamic Routing Using Network of Intelligent Intersections
Background – DRGS

User Optimal Solution (e.g. Waze)

- Stable and fair from the perspective of drivers
- Potential of reducing travel time in the case of low to medium congestion

Drawbacks

- High congestion, high penetration rate and adverse condition
 ➢ Increase in travel time and increase in congestion

- Efficiency depends on the market penetration rate and the communication range of CAVs

Background – DRGS

System Optimal Solution

• 30% reduction in travel time under high congestion and adverse conditions

Drawbacks

• Unstable and unfair from drivers’ perspective
• Success depends on % compliance of the drivers

Zuurbier (2010); Wie et al (1995); Roughgarden & Tardos (2002); Boyce & Xiong (2004); Peeta & Mahmassani (1995); van den Bosch et al (2011)
Research Gaps

• Effects of individualistic and non-compliant behaviour of drivers

• V2V Solutions
 • No single integrated and coherent view of the network
 • Relies on MPR and range
Vehicle Routing Requirements

➢ Provide up to date and reliable real time traffic information
➢ Have single integrated and coherent view of the network
➢ Responsive to the changes in the network
➢ Maximize capacity & minimize travel time
➢ Scalable, and computationally less extensive

End-to-End Distributed Routing in Connected and Automated Vehicle Environment (E2ECAV) using Network of Intelligent Intersections
E2ECAV – Components

➢ The agents
 Agent Type 1: Connected and Automated Vehicles

 Agent Type 2: Infrastructure
 • Links
 • Intersections

➢ The agents’ environment
 • Road network
 • Communication network

➢ Interaction Rules
 • Defined by the city
1. Links store:
 a. # of vehicles on the link
 b. Vehicles’ speed

2. Compute average speed

3. I^2 estimates travel times for upstream links

4. I^2 communicates its adjacent upstream links’ travel times information to its neighbouring intersections

5. I^2 gradually builds full view of the network

6. I^2 from network impedance matrix creates dynamic on demand routing table

7. I^2 receives OD of vehicles and guides them to their destinations using dynamic routing table

Shadi Djavadian, Bilal Farooq

Distributed Dynamic Routing Using Network of Intelligent Intersections
1. Links store:
 a. # of vehicles on the link
 b. Vehicles’ speed
2. Compute average speed
3. I^2 estimates travel times for upstream links
4. I^2 communicates its adjacent upstream links’ travel times information to its neighbouring intersections
5. I^2 gradually builds full view of the network
6. I^2 from network impedance matrix creates dynamic on demand routing table
7. I^2 receives OD of vehicles and guides them to their destinations using dynamic routing table

E2ECAV – Information Network Layer

Road Network Layer

Shadi Djavadian, Bilal Farooq
Distributed Dynamic Routing Using Network of Intelligent Intersections
Case Study – Toronto Network

<table>
<thead>
<tr>
<th>Queen</th>
<th>Richmond</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adelaide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>King</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wellington</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathurst</td>
<td>Portland</td>
<td>Spadina</td>
<td>Blue Jay</td>
<td>John</td>
<td>Simcoe</td>
<td>University</td>
<td>York</td>
<td>Bay</td>
</tr>
</tbody>
</table>

Shadi Djavadian, Bilal Farooq

Distributed Dynamic Routing Using Network of Intelligent Intersections
Case Study – Toronto Network

Specifications

- **Study period:** 7:45am-8:00am
- **Dynamic 5 min OD Matrices** (Transportation Tomorrow Survey, 2011)
- **76 intersections, 223 links**
- **Three types of vehicles:** HDV, AV, CAV
- **Movement:** Intelligent Driver Model (IDM)

 - Same a_{max} & b_{max} for all three vehicle types
 - $T_{r,AV or CAV} = 2T_{r,HDV}$ and $s_{0_{AV or CAV}} = 2s_{0_{HDV}}$

- HDV & AV routed based on pre-trip dynamic shortest path
- CAV routed based on E2ECAV
Case Study – Goal

- Evaluating the performance of 100%E2ECAV and its impact on throughput/travel time in comparison to 100%HDV & 100%AV
Case Study – Travel Time (min) & VKT Analysis

- E2ECAV resulted in 40% decrease in travel time in comparison to HDV
- AV resulted in 31% decrease in travel time in comparison to HDV
Summary

• Dynamic distributed E2E routing based on the network of connected intelligent intersections and level 5 CAVs

• Reliable and up-to-date traffic information along with single integrated and coherent view of the network

• Responsive to the real time changes in the system

• With drivers no longer the decision makers full cooperation and coordination can be expected

• Distributes traffic in the network in such a way that maximizes capacity and minimizes travel time
Future Work

• Different queuing strategies and different classes of vehicles with different priority levels (e.g. emergency vehicles, street cars, etc.)

• Investigate the behavioral response of the drivers in CAV environment
 • Virtual Reality based experiments

• Comparison of E2ECAV with cooperative CAV using only V2V communication

• Shared and on-demand services
Acknowledgements

We would like to thank:

• The Canada Research Chairs program, Ontario Early Research Award and Ryerson University for providing funding for this project, and

• University of Toronto’s Data Management Group for providing the Transportation Tomorrow Survey data used in this study.

• Computational Credits : Amazon Web Services
THANK YOU!

Shadi Djavadian, Bilal Farooq
Shadi.Djavadian@Ryerson.ca

Distributed Dynamic Routing Using Network of Intelligent Intersections