

Alaska Department of Transportation & Public Facilities

Off-grid Power for ITS – Moving To an Efficient, Resilient, and Green Future

Jack Stickel

18 June, 2018

ITS Canada – Niagara Falls, ON June 2018

Off Grid Power for ITS

- Motivation
- Challenges
- Power analysis
- Off-grid power solutions
- Findings
- Outcomes
- Recommendations
- References

Motivation

- RWIS locations in significant reporting locations but off grid
- Off grid power lines too costly / unrealistic to extend
- Performance resiliency & efficiency:
 - Internal combustion generator maintenance & parts
 - Fuel cell excessive maintenance
 - Electrical components draw on power
- Footprint environment friendly with GHG reduction

Challenges

- Infrastructure cost @ 7 sites leverage existing propane tanks, infrastructure, electronics
- Power needs 50 W not large but significant for remote operations
- Component power consumption reduce budget for sensors, cameras, communication
- Power conversion eliminate to extent possible
- Heated equipment tipping buckets, cameras

Power Analysis- Evaluation Approach

- Current power requirements sensors, cameras, communication equipment, & electronics
- Alternatives based on needs, climate, & availability
- Improvements weather sensors, cameras, & communication equipment
- Findings energy budget to meet power needs
- Operating scenarios to reduce power consumption

Power Requirements - Current

Device	Power Consumption
<u>Remote Processing Unit</u> Line powered Linux RPU	No sensors - 11.5 W Max – 50 W @ +12 V Max – 110 W if all sensors are drawing at once
<u>Wind</u> RM Young 05103-L RM Young 05106-MA RM Young 58000 Ultrasonic	0.36 W 0.48 W 0.36 W
<u>Cameras</u> AXIS P1343 Network Camera Cohu 8546 Color Camera Cohu iDome PTZ Camera	6.4 W, 12.8 with heater 13 W, 27 with heater 27 W, 104 W with heater
Temperature/RH Sensor: Theis	1.5 W
Yes / No Precipitation Sensor	0.78 W

Power Requirements - Current

Device	Power Consumption
Pavement Sensors & Temperature Probes	0.01 W
Snow Depth Sensor: Judd Ultrasonic	0.06 W
Precipitation Gauge: Nova Lynx 260-2500	3 W, 400 W with heater
IR Illuminator (Cantronix)	Max – 55 W
Communications: KU-band transmitter	25 W

Power Analysis - Alternatives

- Fuel Cells:
 - Acumentrics RP500 propane / 500W
 - Efoy Pro 800 methanol / 45W
- FAA Aviation Weather Camera program:
 - APRS World WT-10 Wind Turbine 1kW
 - Global 5060 Thermoelectric Generator propane / 50W
- Solar Panels state of the science
- Electronics & Communication simplification

Power Consumption - Improvements

Device	Power Consumption		
CR6 Datalogger	No sensors - 11.5 W, operational to 50W Max – 110 W if all sensors are drawing at once		
Temperature/RH Sensor: HMP60	1 mA average, max. peak 5 mA		
Communication: Raven X Cell Modem	Dormant - 1.5 W, 2.5 W Receiving/transmitting – 2.5 W		
ClearM2M-S Cellular Amplifier	Idle – 3 W, Operating – 12 W		
<u>Cameras</u> Axis 1357-E Mobotix M15 Mobotix M24	12.95 W or High PoE max 25.5 W < 4.5 W 6W, 12 W heated		
<u>Remote Monitoring</u> Sixnet ET-5ES Ethernet Switch Remote Monitoring System RMS-300	Max - 4 W 1.2 W		

Demand Analysis (Continuous Operation): Seward Highway @ Turnagain Pass MP 69.9									
Month	Current Energy Demand (kWh)	Replacin and Comr	emand After ng Cameras munications hent (kWh)		Energy Demand: Solar,Wind & Acumentrics Fuel Cell (kWh)	Energy Demand: Solar, Wind & Efoy Fuel Cell (kWh)	Energy Demand: Solar, Wind & Thermoelectric Generator (kWh)		
January	109.7		22.6		12.6	-359.3	-20.8		-27.5
February	93.5		20.0		-2.2	-338.1	-32.4		-38.4
March	98.6		21.7		-32.6	-404.5	-66.0		-72.7
April	56.2		18.0		-69.7	-429.5	-101.9		-108.4
May	52.4		18.1		-100.1	-472.1	-133.6		-140.3
June	50.7		17.6		-109.8	-469.8	-142.2		-148.6
July	52.4		18.1		-98.2	-470.2	-131.6		-138.3
August	52.4		18.1		-75.4	-447.4	-108.9		-115.6
September	50.7		17.6		-42.1	-402.0	-74.4		-80.9
October	59.8		18.7		-14.6	-386.5	-48.0		-54.6
November	106.1		21.9		7.9	-352.0	-24.4		-30.8
December	109.7		22.6		16.9	-355.0	-16.4		-23.1

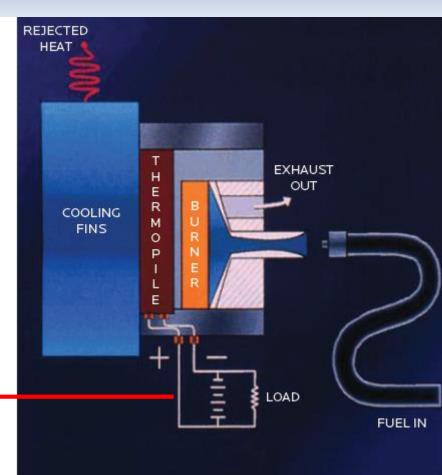
Power Source	Power Capacity (W)	Capital Cost (\$)	Fuel Gas Rate (gal/kWh)
Stion STN130 Thin Film Solar PC Panels	130 W	\$105 ea	NA
APRS World WT-10 Wind Turbine (24V with rectifier)	75 W @ 40 mph & 12 VDC	\$4,000	NA
Acumentrics RP500 Fuel Cell	500 W @ 12 VDC	\$28,531	0.12
Efoy Pro 800 Fuel Cell	45 W @ 12 VDC	\$21,500	.24
Global 5060Thermoelectric Generator	40 W @ 12 VDC	\$6,500	1.16

- Two upgrade options:
 - TEG + solar panels = FAA model
 - Solar + wind*
- Cameras Power-over-Ethernet (POE)
- Communication equipment reduced power
- Wind generator* limited applications

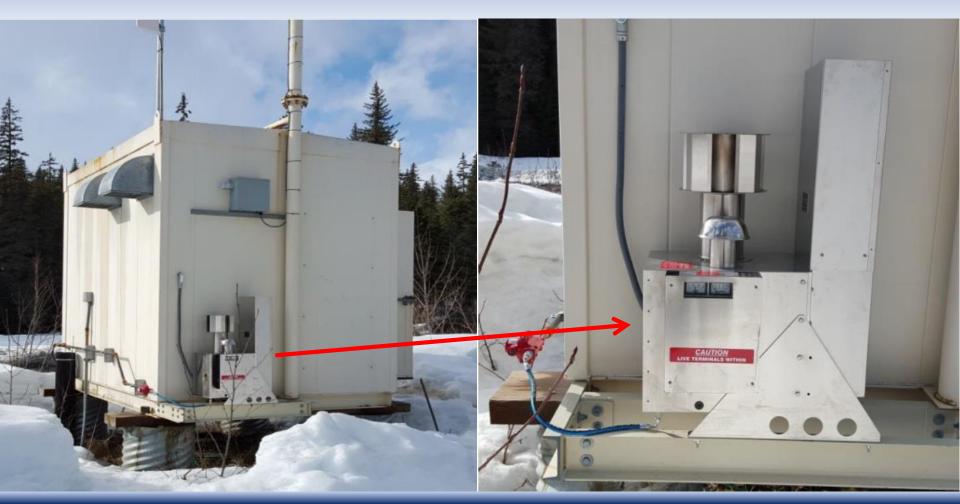
- Heated equipment:
 - Replace cameras with POE non-heated cameras
 - Replace heated tipping buckets with present weather detectors
- Operating scenarios:
 - Limit camera images to daylight only
 - IR illuminator timer for images

TEG + Solar Panel Solution

6 – 120 watt solar panels

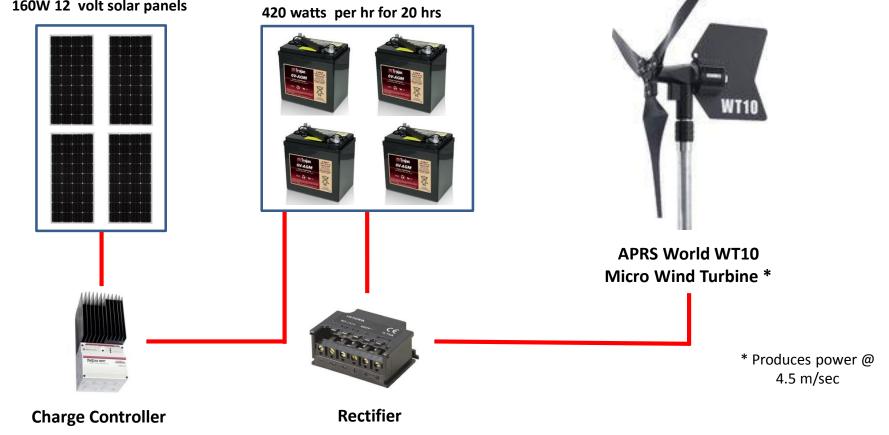

Charge controller

Trojan 12 volt batteries 230 AH @ 20-hr rate 420 watts per hr for 20 hrs



Inverter / charger

TEG + Solar Solution



Solar / Wind Generator Solution

Trojan 6 volt batteries

200 AH @ 20-hr rate

Carmanah CTI-160 solar panels 160W 12 volt solar panels

Solar + Wind Solution

Outcomes

- Reliability meets or exceeds all the power output and consumption projections
- Resiliency no downtime related to TEG except for annual maintenance
- Efficiency TEG propane @ 300 gal/year
- GHG emissions:
 - Minimized leakages
 - Cleaner burn compared to internal combustion
 - Reduced GHG: CO₂, N₂O, CH₄, SO₂

Recommendations

- Upgrade Outback solar charge controller & integrate into remote power monitoring
- Remove absolute devices, relays, and circuit boards that are not being used that may be a power draw
- Schedule annual routine maintenance plus 6 month check
- Add battery storage and a second TEG for additional sensors, IR illuminator, or cameras
- Replace heated tipping bucket with present weather detector
- Complete an energy audit to fully understand the solar & TEG energy production and sensor energy consumption

References

<u>Review Synthesis of Alternative Power Supply</u>

http://www.aurora-program.org/pdf/remote_RWIS_alt_power_supplies_w_cvr.pdf

- <u>Thermoelectric Generator at Divide at Divide RWIS</u> https://rosap.ntl.bts.gov/view/dot/30953
- <u>Small Thermo Electric Generators</u> https://www.electrochem.org/dl/interface/fal/fal08_p54-56.pdf
- <u>Thermoelectric Generator in Alaska TEG Pot Charger</u> https://www.youtube.com/watch?v=IMV9vd4Uojo

References

- Power System Assessment at Blaquiere Point Road Weather Information System (RWIS), Kaktovic Enterprises, LLC, May 2018
- Alaska DOT&PF Road Weather Information System (RWIS) <u>http://roadweather.alaska.gov/</u>
- Federal Aviation Administration Aviation Weather Cameras <u>https://avcams.faa.gov/index.php</u>

Mendenhall Glacier Juneau Alaska

datainfo@gci.net