A Surrogate Safety Analysis at Protected Freeway Ramps Using Cross-Sectional and Before-After Video

Paul St-Aubin^{1,2}, Ph.D. Candidate Luis Miranda-Moreno¹, Assistant Professor Nicolas Saunier², Assistant Professor

¹ Department of Civil Engineering, McGill University, Montreal ² Département des Génies civil, géologique et des mines, École Polytechnique de Montréal

> ITS Canada | ACGM 2012 June 12, 2012

Objective

□ Road safety:

- Conflict-based diagnostic tool for road design, particularly for road safety analysis, but adaptable for other purposes
- Complement to the classical historical analysis approach, or where limited data is available (e.g. "design exceptions")
- Currently implementable for small before-after analyses
- Microscopic trajectory data:
 - ✓ Lane changes
 - ✓ Small-scale changes in speed/direction
 - ✓ Driver behaviour
 - ✓ Etc.

Tarko, A. (2012), Use of crash surrogates and exceedance statistics to estimate road safety, Accident Analysis and Prevention vol. 48

Why Surrogate Safety?

- □ Native use of interactions as a measure of exposure
- □ Return period of accident observations are often unpractical
- Prevention over treatment
- Accident reporting has consistency, accuracy issues
- Microscopic scale of analysis possible

Limitations

- Limited acceptance; technology still in its infancy
- Still some debate regarding transferability of results to other studies/environments
- No standard measurement

Basic Definition

❑ We can define the classical Time-To-Collision (TTC) measure as the travel time required for two vehicles on unchanged paths to enter a collision point (CP), if it exists:

$$TTC = \frac{D_{CP}}{V}$$

Type A - Rear-End Converging

TTC

Type C - Diagonal Converging

Basic collision prediction used in straight highway segments, adapted from:

Laureshyn, A., Svensson, A., Hydén, C. (2010), Evaluation of traffic safety, based on micro-level behavioural data: Theoretical framework and first implementation, Accident Analysis and Prevention, p. 1637-1646.

Automated Trajectory Tracking

- □ Allows for very large datasets to be efficiently collected
- Objective readings
 - Consistent and precise acceleration/speed tracking of multiple vehicles on a projected surface
 - Previous surrogate safety criticism included subjectivity and reliability in conflict measurements
- Cheap and versatile camera sensors; computer-vision-based detection technology improving rapidly
- □ Limited however by weather/visibility conditions
- Practical analysis zone of 50-200 metres, depending on visibility, resolution, camera height, obstacles, etc.
- Manual steps are still required for camera calibration and tracking parameter tuning

K. Ismail, T. Sayed and N. Saunier. *Automated Analysis Of Pedestrian-vehicle Conflicts: Context For Before-and-after Studies*. Transportation Research Record: Journal of the Transportation Research Board, 2198:52-64, 2010.

Conflict Heatmap

- □ Weighted density map of collision points (in this case weighted by e^{-TTC})
- Identify microscopic conflict hotspots from CP's and respective TTC measurements
- Weighing in terms of probability of collision to come with formal relationship between TTC and collision probability

TTC Distribution

- TTC is a solid general purpose indicator for unidirectional highway conflicts
- Many options for aggregation (subsegment, lane, vehicle pair, min, max, mean, moving average, etc.)
- Link between TTC distribution and collision probability is key, future research

Other Measures

- □ Speed distribution
- □ Following distance
- □ Lane changes
- Etc.

Case Study: Highway Horizontal Signalisation

- Highway design exception treatment evaluation (project for the Ministère des Transports du Québec)
 - ✓ "Ligne continue à gauche de la voie 1" (LCGV1)
 - \checkmark Montreal

Highway Accidents

Unidirectional

- Rear-end converging (45%; MTQ)
- ✓ Lateral/side-swipe converging (25%; MTQ)

□ High-speed

 Highly dependant on reaction-time, safety distances (following and merging)

□ Focus: collision probability (as opposed to severity)

- Conflicts during congestion are, so far, too noisy to be significant
- ✓ Observation of high-speed conflicts at off-peak periods

Distance along X coordinates (metros)

Without treatment

With treatment

Entrance

Without treatment

With treatment

Rear-end Conflicts

Side-swipe Conflicts

Flow by lane

Lane changes in *lane changes per veh-km*

Site	Treatment	~	Mean % flow by lane				Site	Treatment	$1 \rightarrow 2$	$2 \rightarrow 3$	$3 \rightarrow 4$	$4 \rightarrow 3$	$3 \rightarrow 2$	$2 \rightarrow 1^{\star\star}$
		4%	Lane 1	Lane 2	Lane 3	Lane 4	A20-E-E56-3	No	0.148	0 102	-		0.007	0.136
A20-E-E56-3	No	-	27.5%	43.9%	28.6%	-	A20-D-D50-5	110	0.140	0.172			0.057	0.150
A20-W-E62	No	24.0%	21.3%	42.2%	36.5%	-	A20-W-E62	No	0.126	0.327	-	-	0.120	0.103
A20-E-E58	No	10.9%	12.3 %	33.5%	54.2%	-	A20-E-E58	No	0.024	0.068	-	-	0.096	0.140
A720-E-E3	Yes	3.0%	31.4%	29.6%	25.8%	13.2%	A720-E-E3	Yes	0.151	0.091	0.046	0.025	0.065	0.093
A20-E-E56-3	Yes	-	32.5%	43.2%	24.3%	-		100	0.110	0.051	0.010	0.025	0.000	0.100
Mean	-	12.6%	25.9%	39.4%	34.7%	-	A20-E-E36-3	Yes	0.118	0.068	-	-	0.053	0.139
A13-N-S3-1	No	5.9%	17.0%	36.9%	46.1%	-	A13-N-S3-1	No	0.175	0.345	-	-	0.344	0.126
A25-S-S5	No	18.2%	38.5%	46.5%	15.1%	-	A25-S-S5	No	0 184	0 162	-	-	0.042	0.279
A20-E-S58	Yes	-	27.2%	44.8%	28.0%	-	A 20 E 050	17	0.100	0.007			0.000	0.176
A25-N-S5	Yes	9.7%	23.4%	44.5%	32.1%	-	A20-E-858	Yes	0.126	0.097	-	-	0.099	0.1/6
Mean	-	11.3%	26.5%	43.2%	30.3%	-	A25-N-S5	Yes	0.184	0.510	-	-	0.225	0.145

Direction for Future Work

Laugier et al. (2011), Probabilistic Analysis of Dynamic Scenes and Collision Risks Assessment to Improve Driving Safety, IEEE Intelligent Transportation Systems

- □ Robot navigation
 - Overlap with smart vehicle driving systems (e.g. collision warning, Google car, etc.)
 - Changes in road design according to changes in vehicle safety performance (e.g. reduction in reaction times through automation)
- Probabilistic trajectory prediction
 - ✓ Trajectory prototypes and path prediction (Saunier et al. 2010)
 - ✓ HMMs, K-Means, FCM, Similarity Threshold, I-kMeans, Agglomerative, Divisive, SOM, Fuzzy SOM and SOFM (Morris & Trivedi, 2008)

Conclusion

- Safety benefit not significant
- LCGV1 treatment has its flaws
 - For some sites, its use may be justified, but for many sites, it creates or, at the very least, only displaces problems instead of correcting them.
- Conflict analysis methodology is in place, currently adequate for basic comparative analysis
- Computer vision tracking algorithms constantly improving
- □ Next steps:
 - ✓ Improvements in path and collision prediction
 - ✓ Continued use of methodology in a wider variety of environments
 - Comparison with historical accident data

We want to acknowledge the support of the Ministère des Transports du Québec which funded this project

Questions?

- □ **Tarko**, A. (2012) Use of crash surrogates and exceedance statistics to estimate road safety, Accident Analysis and Prevention vol. 48
- Laureshyn, A., Svensson, A., Hydén, C. (2010) Evaluation of traffic safety, based on micro-level behavioural data: Theoretical framework and first implementation, Accident Analysis and Prevention, p. 1637-1646.
- Ismail, K., Sayed, T., Saunier, N. (2010) Automated Analysis Of Pedestrian-vehicle Conflicts: Context For Before-and-after Studies. Transportation Research Record: Journal of the Transportation Research Board, 2198:52-64
- □ Laugier et al. (2011) Probabilistic Analysis of Dynamic Scenes and Collision Risks Assessment to Improve Driving Safety, IEEE Intelligent Transportation Systems
- □ Morris, B. T., & Trivedi, M. M. (2008) *A Survey of Vision-Based Trajectory Learning and Analysis for Surveillance*. IEEE Transactions on Circuits and Systems for Video Technology, *18*, 1114-1127.
- Saunier N., Sayed T. and Ismail K. (2010) Large Scale Automated Analysis of Vehicle Interactions and Collisions. Transportation Research Record: Journal of the Transportation Research Board, 2147:42-50
- St-Aubin, P., Miranda-Moreno, L., Saunier, N. (2012) Surrogate Safety Analysis at Protected Freeway Ramps Using Cross-sectional and Before-After Video Data, Proc. TRB-XCI, Washington, D.C.; January 22-26.
- St-Aubin, P. (2012) Traffic Safety Analysis for Urban Highway Ramps and Lane-Change Bans Using Accident Data and Video-Based Surrogate Safety Measures, Master of Engineering, McGill University, Montréal, 100 pages.