Queue Length Estimation and Prediction on Freeway off-ramps using traffic volume count data and Kalman filter

Seiran Heshami
Lina Kattan
May, 2016
Background

➢ Congestion on Freeways

- Traffic queue on merge and divergent points

Queue on Off-ramps

Queue on On-ramps

(CBC Calgary) (CBC Calgary)
Background

➢ Causes of Queue Formation

 - Recurrent Congestion
 - Non-recurrent Congestion

➢ Role of Real-time Queue Length Information

 - Proactive Queue Management Strategies
Objectives and Contributions

- Real-time queue length estimation on off-ramps
- Predicting the queue length over a short time period
- Using traffic count data as the only data source
- Applying different methods of noise estimation
Methodology

1: Kalman gain calculation
2: Update measurements
3: Update error covariance
4: Project into the next time step

Initial estimates

Measurements from video-based count data

Predicted estimates

Corrected estimates
Methodology

- Initial queue measurement based on count data

 Step 1: Estimating the average travel times between cameras

 Step 2: Estimating the average speed between cameras

 Step 3: Estimating the density and queue length of each section based on traffic count

 Step 4: Using the estimated queue length as the initial measurement in Kalman filter for each time step
Methodology

- **Kalman Filter (KF)**
 - **Input data for KF**
 - Measured queue length from count data
 - Traffic count from upstream and downstream detectors
 - **Fundamental KF Equations**
 - **State Equation**
 \[
 x_{k+1} = \varphi x_k + \beta u_k + w_k
 \]
 \[
 \hat{x}_{k+1} = \hat{x}_k + (f_{in_k} - f_{out_k}) + w_k
 \]
 - **Measurement Equation**
 \[
 Z_k = Hx_k + v_k
 \]
 \[
 w_k \sim N(0,Q)
 \]
 \[
 v_k \sim N(0,R)
 \]
Methodology

Kalman Filter Process

Prediction

Initialize \hat{x}_k, P_k

State equation:

$\hat{x}_{k+1}^- = \phi \hat{x}_k + \beta u_k + w_k$

Update covariance:

$P_{k+1}^- = \phi P_k \phi^T + Q$

Correction

Kalman gain calculation:

$K_k = P_k^- H^T (H P_k^- H^T + R)^{-1}$

Update the estimate via measurement:

$\hat{x}_k = \hat{x}_k^- + K_k (Z_k - H \hat{x}_k^-)$

Update error covariance:

$P_k = (I - K_k H) P_k^-$
Case Study

- Study Area
 - Deerfoot Trail southbound off-ramp to 17th Ave SE
Results and Analysis

Flow-Density from RTMS data

| Jam Density | 100 Vh/Km |
Results and Analysis

Measured queue length based on count data

Corrected and predicted queue length with KF and Mayers adaptive Q and R estimation

Corrected and predicted queue length with KF and video processing errors
Conclusions and Keynotes

- Estimating the queue length on freeway off-ramps
- Predicting the queue length for the next time step
- Applying Kalman filter based on two different noise covariance calculation
Future Studies

- Advanced processing of video files to produce other types of data including occupancy and speed and estimate the queue length based on new data and comparing the results.

- Examining the model on long on-ramps or other network components.

- Integrating the model with a responsive and adaptive signal control strategy.
Thank you

Questions and Comments